Thermoelectric properties of copper chalcogenide alloys deposited via the solution-phase using a thiol–amine solvent mixture

نویسندگان

  • Yuanyu Ma
  • Prathamesh B. Vartak
  • Prajwal Nagaraj
  • Robert Y. Wang
چکیده

There has been a growing interest in solution-phase routes to thermoelectric materials due to the decreased costs and novel device architectures that these methods enable. Many excellent thermoelectric materials are metal chalcogenide semiconductors and the ability to create soluble metal chalcogenide semiconductor precursors using thiol–amine solvent mixtures was recently demonstrated by others. In this paper, we report the first thermoelectric property measurements on metal chalcogenide thin films made in this manner. We create Cu2 xSeyS1 y and Ag-doped Cu2 xSeyS1 y thin films and study the interrelationship between their composition and room temperature thermoelectric properties. We find that the precursor annealing temperature affects the metal : chalcogen ratio, and leads to charge carrier concentration changes that affect the Seebeck coefficient and electrical conductivity. Increasing the Se : S ratio increases electrical conductivity and decreases the Seebeck coefficient. We also find that incorporating Ag into the Cu2 xSeyS1 y film leads to appreciable improvements in thermoelectric performance by increasing the Seebeck coefficient and decreasing thermal conductivity. Overall, we find that the room temperature thermoelectric properties of these solution-processed materials are comparable to measurements on Cu2 xSe alloys made via conventional thermoelectric material processing methods. Achieving parity between solution-phase processing and conventional processing is an important milestone and demonstrates the promise of this binary solvent approach as a solution-phase route to thermoelectric materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of dual phase bronze alloys from elemental nanoparticle constituents

Dual phase (a þ b) copper–tin alloys were synthesized from elemental nanoparticle precursors following consolidation, annealing and quenching steps. The precursors were derived from the sequential reduction of tin and copper salts in ethanolic solution. The dual phase microstructure exhibits a duplex character with a mixture of Cu-rich and Sn-rich (a þ b) regions. 2004 Published by Elsevier Ltd...

متن کامل

Optical properties of spin-coated Er-doped Ga1As39S60 Chalcogenide thin films

Spin-coating of Chalcogenide glasses is a cost-effective and flexible method to produce thin films applicable in photonics. In this paper Er was doped into Ga1As39S60 glass by melt quenching technique and solutions for spin coating were prepared from glass powders dissolved in Propylamine and Ethylendiamine. Substrates used were microscopic slides (refractive index of about 1.51). Applied layer...

متن کامل

A Study of the Influence of Percentage of Copper on the Structural and Optical Properties of Au-Cu Nanoparticle

Here we present our experimental results in synthesizing Au-Cu nano-particles with tunable localized surface plasmon resonance frequency through wet-chemical at temperature room. The reaction is performed in the presence of ascorbic acid as a reducing agent and polyvinyl pyrrolidone as capping agent via four different procedures: (1) mixture of 90% HAuCl4 and 10% CuSO4.5H2O precursors, (2) mixt...

متن کامل

Ambient Facile Synthesis of Gram-Scale Copper Selenide Nanostructures from Commercial Copper and Selenium Powder.

Grams of copper selenides (Cu(2-x)Se) were prepared from commercial copper and selenium powders in the presence of thiol ligands by a one-pot reaction at room temperature. The resultant copper selenides are a mixture of nanoparticles and their assembled nanosheets, and the thickness of nanosheets assembled is strongly dependent on the ratio of thiol ligand to selenium powder. The resultant Cu(2...

متن کامل

Effect of Cu Content on TiN-Cu Nanocomposite Film Properties: Structural and Hardness Studies

Titanium nitride-Copper (TiN-Cu) nanocomposite films were deposited onto stainless steel substrate using hollow cathode discharge ion plating technique. The influence of Cu content in the range of 2-7 at.% on the microstructure, morphology and mechanical properties of deposited films were investigated. Structural properties of the films were studied by X-ray diffraction pattern. Topography of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016